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Abstract: Modern cities have imposed a fast-paced lifestyle where more drivers on the road suffer
from fatigue and sleep deprivation. Consequently, road accidents have increased, becoming one of
the leading causes of injuries and death among young adults and children. These accidents can be
prevented if fatigue symptoms are diagnosed and detected sufficiently early. For this reason, we
propose and compare two AlexNet CNN-based models to detect drivers’ fatigue behaviors, relying
on head position and mouth movements as behavioral measures. We used two different approaches.
The first approach is transfer learning, specifically, fine-tuning AlexNet, which allowed us to take
advantage of what the model had already learned without developing it from scratch. The newly
trained model was able to predict drivers’ drowsiness behaviors. The second approach is the use of
AlexNet to extract features by training the top layers of the network. These features were reduced
using non-negative matrix factorization (NMF) and classified with a support vector machine (SVM)
classifier. The experiments showed that our proposed transfer learning model achieved an accuracy
of 95.7%, while the feature extraction SVM-based model performed better, with an accuracy of 99.65%.
Both models were trained on a simulated NTHU Driver Drowsiness Detection dataset.

Keywords: deep learning; transfer learning; support vector machine; neural networks; non-negative
matrix factorization

1. Introduction

For a long time, road safety has been a matter of concern as traffic accidents endanger
the driver, passengers and everyone else in their scope, due to road and vehicle damage.
Therefore, several kinds of research studies have been carried out to investigate the factors
of traffic crashes and accidents. According to the World Health Organization’s 2018 global
report on road safety [1], traffic accidents are responsible for approximately 1.35 million
deaths and 50 million injuries each year and are the leading cause of injury for children
and young adults from the age of 5 to 29, among which driver fatigue is a main factor.
Fatigue can be described as a state reached when the brain cannot maintain ongoing activity.
According to the AAA Foundation for Traffic Safety [2], 328,000 crashes occur annually
due to driver fatigue. Consequently, monitoring driver vigilance can be an effective
countermeasure for fatigue management. Therefore, driver fatigue detection systems that
alert the driver of impending fatigue were introduced. Over the years, many solutions have
been proposed in this area. They are categorized based on the used detection measures,
i.e., behavioral or physiological.

Physiological methods can be identified by physical measures obtained from the
human body, such as brain activity, detected by an electroencephalogram (EEG) [3–8];
heartbeat, measured by an electrocardiogram (ECG) [9–11]; eye signals, identified by
an electrooculogram (EOG) [12,13]; and electrical muscle signal detection, referred to as
electromyography (EMG) [14–16]. Due to their information richness, these physiological
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approaches have a high level of accuracy. However, most physiological parameters are
obtained via physically attached sensors, which negatively impact the driver’s comfort and
system acceptability.

On the other hand, the behavioral measures identify driver fatigue based on external
visible behaviors, including the driver’s facial expressions, such as eye metrics, i.e., blinking
rate or pupil behaviors. Although the eye state is a measure that is widely used by
researchers [17–20], it is highly sensitive to light and glasses. Other facial measures are
yawning [20–22] and head position [23,24]. In addition, behavioral characteristics can be
fused with vehicle measures, such as the steering wheel angle and grip, lane monitoring
and speed [25–28]. Although approaches that depend on the vehicle characteristics are not
invasive, they can have some dependencies, such as the vehicle type, the driver’s driving
experience and external conditions.

Since behavioral methods are more accessible through non-contact and non-invasive
techniques and can provide high detection accuracy, we propose a fatigue detection model
that classifies fatigue behaviors. Accordingly, we used behavioral measures; first, the
driver’s head position was observed to identify whether the driver’s head was still and
focused on the lane, distracted by looking to the side, or nodding as an indication of being
fatigued. Second, we classified mouth movements to identify whether the driver was
yawning, talking and laughing, or just being still. Furthermore, we utilized a pre-trained
AlexNet CNN in two different approaches. The first approach involved fine-tuning the final
few layers so that the model could accommodate the NTHU Driver Drowsiness Detection
dataset used. The second approach involved using AlexNet for feature extraction, followed
by NMF for dimension reduction. These features were then fed into an SVM classifier.

The main contribution of this work is that the model eliminates the dependency on a
single feature when detecting driver fatigue. In other words, our proposed model learns
and extracts the facial features from the upper body and/or the entire face. Therefore, it
is less sensitive to camera placement. In addition, our model reduces the computational
complexity of detecting only one area, such as the eye or mouth, which can raise challenges
in real-time driving conditions. Moreover, exploiting deep neural networks for feature
extraction is considered the easiest and fastest approach since it requires only one pass
through the data. Combining a pre-trained deep neural network with a powerful classifier,
such as the SVM, produced a robust and real-time fatigue detection model. We also
combined fatigue and distraction detection in one model. This paper is structured as
follows: Section 2 presents a literature review of related work to highlight various fatigue
detection methods currently in use. Section 3 illustrates the methodology behind our model,
while Section 4 provides brief background knowledge of the used terminologies. Section 5
covers the implementation, results and evaluation of the proposed models. Finally, the
discussion and conclusion are presented in Sections 6 and 7, respectively.

2. Related Work

Many researchers in the past have dedicated their work to developing solutions that
enhance the detection of driver fatigue. The current section presents different AI (artificial
intelligence) methods to increase driver safety using physical or facial characteristics. We
can categorize these methods into rule-based, machine learning and deep learning methods.

2.1. Rule-Based

Rule-based methods depend on detecting the fatigue state based on a set of calculated
rules. Zhongmin Liu et al. [29] developed a fatigue detection system whereby the eye
and mouth features are detected through the multi-block local binary pattern (MB-LBP)
algorithm, which is based on Haar-like and LBP features, as well as the Adaboost classifier.
Furthermore, based on the calculated blinking and yawning frequency, a fuzzy interference
system evaluates the final driver state. The authors argued that their proposed method had
a fatigue detection rate of 96.5% under normal conditions, while, in severe fatigue cases, it
reached almost 100%. However, it did not yield the same performance if the driver wore
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glasses. Another rule-based research method that depends on head posture was introduced
by Ines Teyeb et al. [30]; their model detects driver fatigue if the head angle exceeds a
certain threshold. They were able to identify fatigue cases with an 88.33% success rate.
Although rule-based methods are straightforward, they may falsely identify fatigue when
the relevant visual cue cannot be distinguished from similar motions.

2.2. Machine Learning

Machine learning is widely adopted in this field. Abdelmalik Moujahid et al. [31]
proposed a fatigue monitoring system based on machine learning. They used a pyramid
multi-level method for face representation and a face descriptor based on three types of
feature extraction algorithms, namely, histogram of oriented gradients (HOG), a covariance
descriptor (COV) and a local binary pattern (LBP) descriptor, followed by principal compo-
nent analysis (PCA) for feature reduction and SVM for classification. The authors compared
their model to some transfer pre-trained networks, such as AlexNet, VGGFaceNet and
FlowImageNet. However, their model outperformed them all with a detection accuracy of
79.84%. Furthermore, Hari C.V. and Praveen Sankaran [23] proposed a two-layer cluster
approach with Gabor features and SVM for classification and achieved an accuracy of
95.8%. This approach was compared with deep learning-constructed CNN. However,
their proposed feature extraction approach performed better. In [32], the authors used
an improved version of HOG for feature extraction from the eye region followed by a
naive Bayesian (NB) classifier for the purpose of detecting driver fatigue. Their framework
achieved an accuracy of 85.62%.

2.3. Deep Learning

Other researchers have used deep learning methods. Xiaofeng Li et al. [33] proposed a
driver fatigue detection system that utilizes neural networks. First, the LittleFace detection
network is used to locate the driver’s face and only the normal state undergoes the speed-
optimized supervised descent method (SDM) face alignment algorithm to obtain visual
features of all parts of the face. The extracted features are the eye aspect ratio, mouth aspect
ratio and head poses. Each of these features is learned from the corresponding landmark
information, which leads to the estimation of the driver fatigue state. The authors state
that their system achieved an average detection accuracy of 89.55%. However, the face
alignment performance may decrease when the driver is wearing glasses. Additionally,
Rateb Jabbara et al. [34] presented a non-complex fatigue detection framework specifically
designed for Android applications. It is based on extracting facial features using a per-
ceptron multilayer neural network for binary classification. They achieved an accuracy
of 81%. In [35], the authors proposed and compared two LSTM-based fatigue detection
systems that utilize eye movement. The first is a recurrent LSTM and the second is a
convolutional LSTM, which achieved higher accuracy results, reaching 97%. Another
deep learning model was developed using two ANNs (artificial neural networks), one
for prediction and the other for detection [36]. Data were collected from multiple sources;
behavioral, physiological and vehicle metrics were combined. However, the authors found
that behavioral data alone achieved the best prediction rate of the model. On the other
hand, the combined data achieved the best detection rate of the model.

Moreover, Hu He et al. [37] proposed a two-stage CNN-based model for detection
and classification, where features from the eye and mouth regions were used for fatigue
identification. The authors conducted experiments on RaspberryPi4, which achieved an
accuracy of 94.7%. Additionally, Yan Wang et al. [18] created an eye-gaze detection system
based on a dual-stream bidirectional CNN and an eye screening mechanism to eliminate
errors. The highest accuracy reached was 97.9%. According to the authors, their approach
can be applied to general image recognition tasks and fatigue detection. Another proposed
method to determine the fatigue state utilized the characteristics of the eyes and mouth
for training a single multi-task CNN model, where the highest accuracy achieved was
98.81% [20].
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2.4. Pre-Trained CNN

Since our work is concerned with utilizing deep neural pre-trained networks, the
following research studies adopted this approach. In [38], the authors extracted features
from each eye separately and fed them into a pre-trained CNN model similar to VGG-
16 architecture to detect fatigue. The authors were able to achieve an average accuracy
of 93.3%.

Other researchers devoted their work to identifying driver distraction through upper
body behavior. Y. Xing et al. [39] compared the classification of seven driving behaviors
with different models where the pre-trained CNN was fine-tuned and where the pre-trained
CNN was used as a feature extractor. For the first approach, the authors used two types
of input images, which were Gaussian mixture model (GMM) segmented images and
raw images. These images were then trained on pre-trained AlexNet, GoogLeNet and
ResNet models. The experiment’s results showed that GMM-based AlexNet achieved the
best activity recognition classification results—81.6%. However, when relying on a binary
classification to indicate if the driver was distracted or not, the best classification result was
found for GMM-based AlexNet, with 94.2% average accuracy.

Similarly, Sarfaraz Masood et al. [40] used pre-trained VGG-16 CNNs to identify
ten driving distraction behaviors. They were able to identify distraction behaviors with
accuracy of up to 99.5%. Similarly, Yuxin Zhang et al. [41] utilized various information from
different sources to identify driver distraction, including facial behaviors, where a camera
was used to detect head orientation and eye gaze. The proposed convolutional-LSTM-based
model partially used transfer learning and MobileNet was utilized for the data-type images,
achieving an accuracy of up to 97.47%. Finally, a summary of the previously mentioned
literature is provided in Table 1.

Based on the provided literature, we propose a non-invasive driver fatigue detection
model, aiming to reduce computational complexity while improving detection accuracy, as
presented in the following section.

Table 1. Summary of the literature review.

Citation Goal Used Measures Method Dataset Performance

[29] Detecting
driver fatigue

PERCLOS Yawning Rule-based Caltech10k Web Faces
dataset, FDDB dataset

Success rate under
normal conditions:
96.5 %

[30] Detecting
driver fatigue

Head position Rule-based Self-built dataset Success rate: 88.33%

[23] Detecting
driver
distraction

Head position Two-layer clustered
approach with Gabor
features and SVM
classifier

Self-built dataset Accuracy: 95.8%

[32] Detecting
driver fatigue

Eye state Improved HOG features
and NB classifier

NTHU Drowsy Driver
Detection dataset

Accuracy: 85.62%

[31] Detecting
driver fatigue

Facial features Feature extraction
through multiple face
descriptors followed by
PCA and SVM

NTHU Drowsy Driver
Detection dataset

Accuracy: 79.84%

[34] Detecting
driver fatigue

Facial features Multi-layer perceptron NTHU Drowsy Driver
Detection dataset

Accuracy: 81%

[33] Detecting
driver fatigue
and
distraction

Eye aspect ratio,
mouth aspect ratio,
head poses

CNN-based face
detection network,
speed-optimized SDM
face alignment algorithm

AFLW, Pointing’04,
300W, 300W-LP,
Menpo2D, self-built
dataset (DriverEyes),
YawDD dataset

Accuracy: 89.55%

[35] Detecting
driver fatigue

Eye movement LSTM-CNN Self-built dataset Accuracy: 97.87%
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Table 1. Cont.

Citation Goal Used Measures Method Dataset Performance

[36] Detecting
driver fatigue

Eye movement, head
position, head
rotation, heart rate,
respiration rate,
car data

Adaptive ANN Self-built dataset 80% performance
improvement after
adaptation of
AdANN

[37] Detecting
driver fatigue

Eye state, mouth state CNN YawDD dataset,
Self-built dataset

Accuracy: 94.7%

[18] Detecting
driver fatigue

Eye gaze Dual-stream
bidirectional CNN with
projection vectors and
Gabor filters

Closed Eyes in the Wild
dataset, Eyeblink dataset,
self-built dataset

Accuracy: 97.9%

[20] Detecting
driver fatigue

PERCLOS, Yawning CNN YawdDD dataset, NTHU
Drowsy Driver Detection
dataset

Accuracy: 98.81%

[38] Detecting
driver fatigue

Eye state Pre-trained VGG-16
CNN

Closed Eyes in the Wild
dataset, self-built dataset

Accuracy: 93.3%

[39] Detecting
driver
distraction

Upper body
behaviors

Pre-trained AlexNet
CNN

Self-built dataset Accuracy: 94.2%

[40] Detecting
driver
distraction

Upper body
behaviors

Pre-trained VGG-16
CNN

State Farm Distracted
Drivers Dataset

Accuracy: 99.5%

[41] Detecting
driver
distraction

Head orientation, eye
behavior, skin sensor
to detect emotions,
car signals, EMG

Deep multi-modal fusion
based on Conv-LSTM
MobileNet CNN is used
for images data type

Self-built dataset Accuracy: 97.47%

3. Methodology

The current section provides an overview of the proposed SVM-based transfer deep
learning model, which aims to detect driver fatigue and distraction symptoms. Figure 1
shows the block diagram of the proposed system. Each component is described in detail in
the following sections.

As illustrated in Figure 1, video frames were taken from the NTHU drowsy driving
video dataset. These frames were preprocessed and fed into a pre-trained AlexNet CNN.
Consequently, a feature representation of the training dataset was produced. Then, the
NMF was used for the dimension reduction of the feature set, increasing the speed of model
training and reducing storage and computational time. The reduced feature set was used
as an input to train an SVM classifier. In the proposed model, the driver’s head position is
classified to detect the focus of the driver. The head position was chosen as it is the easiest
and fastest indicator to detect. The model shows that the driver is visually distracted if
he/she is looking away from the road. In another case, if the model identifies fatigue, then
the classification has detected that the driver’s head was nodding. However, if the driver’s
head is still, the model goes to the next stage and checks the facial features. After using the
face detection algorithm, images were fed into another AlexNet pre-trained model, where
the facial features were extracted, then reduced and classified through an SVM classifier.
The mouth region was chosen for the second classification. If the driver’s mouth is still,
talking or laughing, the model assumes that the driver is awake. However, if the driver is
yawning, then the model reports it as fatigue.
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Figure 1. Overview of the proposed model.

The following section provides background knowledge on the primary concepts
employed in our proposed model.

4. Background Knowledge
4.1. Convolutional Neural Networks

CNNs function as feed-forward networks designed for analyzing and classifying visual
data [42]. There are essential factors that have made neural networks well known and
successful, such as the availability of large-scale public images and video datasets [43], as
well as the invention of high-performance computing (HPC), including graphical processing
units and distributed clusters [44]. Overall, the CNN has shown effective results with
feature extraction and pattern identification problems [43,45].

4.2. Pre-Trained Networks and Transfer Learning

Transfer learning is considered a well-known machine learning method, whereby new
models can gain knowledge and experience from a previously learned task to improve
performance in a new one. The purpose of transfer learning in deep learning is to save time
and resources by avoiding the need to train multiple neural network architectures from
scratch to fulfill similar tasks. Transfer learning has already been applied to solve problems
in various fields, including, but not limited to, speech recognition tasks [46], medical
diagnosis tasks [47], human action recognition tasks [48], emotion recognition tasks [49]
and climate change and cloud classification [50], as well as road safety systems [45,51].
Building and training a new convolutional neural network from scratch consumes much
time and effort. Therefore, pre-trained models are widely used as they provide a better
starting point and have a higher learning rate, taking advantage of previously acquired
knowledge. Deep pre-trained neural networks can be applied in two ways, i.e., transfer
learning by retaining the original pre-trained network while altering the weights to adapt
to the new dataset and using the pre-trained network for feature extraction and utilize
these features to train a machine learning classifier, such as SVM. Both approaches are
widely used. However, the second approach has considerable success in image recognition
and classification tasks [48]. Our proposed model falls within the second approach. A few
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well-known pre-trained networks were trained on a large-scale dataset with millions of
images and could classify thousands of objects. The pre-trained network characteristics
affect the choice of selecting a network to use. Although VGG16 has high accuracy, the
memory requirement is more than twice the consumption needed for AlexNet, since it
has about 138 million parameters, as opposed to AlextNet, with 62 million parameters.
Additionally, AlexNet has the least computational power among other transfer networks in
terms of the number of floating point operations (FLOPs) required to run a forward pass.
For this reason, AlextNet was chosen since it provided good attributes in terms of speed,
accuracy and size.

4.3. AlexNet

AlexNet is a convolutional neural network that was created by Alex Krizhevsky and
his team of researchers. Thanks to its pre-trained neural structure, it is capable of quickly
identifying more than a thousand objects. AlexNet was trained on the ImageNet database,
which contains ten million images and is categorized into nearly 22 thousand categories.
Its goal is to allow researchers to access a valuable image dataset to help them with their
studies. Since 2010, ImageNet has held a competition for object recognition called the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC). In 2012, Krizhevsky et al.
achieved the lowest error rate of 15.3% in ILSVRC, winning first place [52]. Some essential
features made AlextNet stand out from other competitors, such as the rectified linear
units (ReLUs), which allowed a large model to train six times faster than the standard
Tanh units [43]. Additionally, the use of multiple GPUs also significantly improved the
model training time. Moreover, the possibility of overfitting in AlextNet is slim due to the
introduction of overlapping pooling, which reduced the error by 0.5%. In addition, Alex
Krizhevsky et al. minimized overfitting using data augmentation and dropout [43].

AlexNet has a total of eight layers with 62.3 million learnable parameters. It has
five convolutional layers combined with max-pooling layers, three fully connected layers
and two dropout layers. In addition, the ReLU is the activation function of all layers,
except the final output layer, where the Softmax activation function is used. As shown
by the architecture in Table 2, as we go deeper, the number of filters is increased to allow
the extraction of more features. On the other hand, the size of the filters is reduced to
decrease the shape of the filter map. Moreover, since AlexNet is a deep network model,
Krizhevsky et al. added padding to maintain the feature maps’ size at a significantly
reduced level.

Table 2. AlexNet architecture.

Type Number of
Filters

Filter Size Stride Padding Size of the
Feature Map

Activation
Function

Input - - - - 227 × 227 × 3 -

Convolution l 96 11 × 11 4 - 55 × 55 × 96 ReLU

Max Pool 1 - 3 × 3 2 - 27 × 27 × 96 -

Convolution 2 256 5 × 5 1 2 27 × 27 × 256 ReLU

Max Pool 2 - 3 × 3 2 - 13 × 13 × 256 -

Convolution 3 384 3 × 3 1 1 13 × 13 × 384 ReLU

Convolution 4 384 3 × 3 1 1 13 × 13 × 384 ReLU

Convolution 5 256 3 × 3 1 1 13 × 13 × 256 ReLU

Max Pool 3 - 3 × 3 2 - 6 × 6 × 256 -

Fully Connected 1 - - - - 4096 ReLU

Dropout 1 Rate = 0.5 - - - 4096 -
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Table 2. Cont.

Type Number of
Filters

Filter Size Stride Padding Size of the
Feature Map

Activation
Function

Fully Connected 2 - - - - 4096 ReLU

Dropout 2 Rate = 0.5 - - - 4096 -

Fully Connected 3 - - - - 1000 Softmax

4.4. Support Vector Machine

The support victor machine is considered one of the most common supervised learning
models in machine learning. Cortes and Vapnik created SVM and initially meant it to solve
binary classification problems [53]. Nonetheless, it became a powerful method to classify
linear and non-linear tasks, perform regression and detect outliers. The basic concept of
SVM is assigning data points in a non-linear fashion to a highly dimensional feature space
by applying the suitable kernel function with the hope of separating data into classes by
creating lines or hyperplanes, as illustrated in Figure 2.

Figure 2. A binary classification of SVM.

5. Implementation

In this work, two pre-trained CNN-based methods were used to classify images from
the NTHU driver drowsiness dataset. The first method uses transfer learning based on
AlexNet, whereas the second method uses AlexNet as a feature extractor based on SVM.
Both models’ structure, implementation and evaluation are explained in detail in the
following sections.

5.1. Dataset Description

The dataset used in this study is the Driver Drowsiness Detection dataset collected
by National Tsuing Hua University (NTHU) in the computer vision lab [54]. Thirty-six
subjects participated in recording a total of 9.5 h in a driver simulation environment to create
training, evaluation and testing datasets. Participants were requested to record driving
scenarios in changing conditions, such as wearing and removing glasses/sunglasses in
the day and at night. Furthermore, drivers performed different behaviors to show their
drowsiness status, as elaborated in Table 3. Videos in the dataset were acquired using active
infrared illumination, which is convenient for night vision recording. The resolution of the
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videos was 640 × 480 in AVI and had a frame rate of 15 frames per second (fps) for night
videos and 30 fps for daytime videos. Figures 3 and 4 represent sample images for the
same behavior but changing conditions and for different behaviors but similar conditions,
respectively.

Table 3. Drivers’ behaviors from the NTHU dataset.

Driver’s Behavior Description

Yawning The participant yawns as an indication of tiredness

Nodding The participant’s head falls as an indication of feeling sleepy

Looking aside The participant looks right or left as an indication of distraction

Talking or laughing The participant makes conversation as an indication of being
vigilant

Sleepy eyes The participant’s eye blinking rate is increasing as an indication
of drowsiness

Drowsy The participant performs a collection of the above behaviors as an
indication of drowsiness

Stillness The participant is still and drives normally

Figure 3. Sample images for the same behavior but changing conditions.

Figure 4. Sample images for different behaviors in similar conditions.
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5.2. Dataset Preprocessing and Augmentation

First, frame extraction was applied with a frame rate of 30 fps to the video dataset
to acquire the images. At the same time, the label was added to the image from the corre-
sponding annotation file of each video. Afterward, we used the Viola–Jones algorithm [55],
which converts images to the grey scale to reduce processing. The algorithm works by
relying on Haar features to enable face detection. Viola and Jones identified three types of
Haar-like features in their research, edge, line and four rectangle features. The horizontal
and vertical features are essential for face detection as they simulate the eyebrows and nose
shape, as shown in Figure 5. Consequently, calculated integral images underwent Adaboost
training to properly locate and identify facial features. Furthermore, the cascading classifier
was used to distinguish whether a window contained a face or not. The upside of using the
Viola–Jones algorithm is the real-time processing ability, as well as the robustness, since it
has a highly accurate detection rate.

Figure 5. Haar-like features.

We separated the images to form two different datasets, head and mouth. The classes
of each dataset are represented in Table 4. Another equally important image processing
technique is image augmentation. By applying image augmentation to the training data, the
count of input images can be effectively increased. Augmentation also ensures consistency
in the trained network and allows it to overlook distortions in image data. Since our
proposed model uses the AlexNet deep transfer model, we applied image augmentation
by resizing the dataset to match the standard input image size of AlexNet, which is
227 × 227 × 3, where 3 is the RGB color channels.
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Table 4. Representation of the dataset used.

Dataset Classes Dataset
Annotation

Number of
Subjects

Scenarios

Head Position Stillness 0 36 Day—without glasses

Nodding 1 Day—glasses

Looking to the side 2 Day—sunglasses

Mouth Movements Stillness 0 36 Night—without glasses

Yawning 1 Night—glasses

Talking and laughing 2

5.3. AlexNet as a Deep Transfer Learning Model

We used the pre-trained AlextNet architecture as the base for our transfer learning
model based on two datasets: (1) the head position dataset, which contains three classes,
i.e., looking to the side, nodding and stillness; (2) the mouth movement dataset, which
contains three classes, i.e., yawning, talking and laughing, and stillness. We began by
loading the pre-trained network. Afterward, 80% of the augmented dataset images were
used for training, 10% for validation and 10% for testing. Then, we replaced the last three
layers in the original AlexNet architecture with new layers to match our three-class output
instead of the existing thousand class output. The removed layers were FC8, Softmax and
the output layer. The newly added layers were a new FC layer, the Softmax layer and a
new output layer, as illustrated in Figure 6. The function of Softmax in the output layer
is the classification of facial images. It works by converting real values to probabilities by
computing the exponential of a particular class over the sum of the exponential of each
class. Consequently, the highest probability was considered as the actual output. Moreover,
the cross-entropy loss function was combined with Softmax to determine how well the
neural networks fit the data, as defined in Equation (1), where M is the number of classes.

−
M

∑
C=1

ObsearvedC× log (PredictedC) (1)

Figure 6. The structure of the transfer learning model.
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5.3.1. The Experiment of the Transfer Learning-Based Model

All the experiments in this study were conducted using an Intel Core i7-9750H laptop
with NVIDIA GeForce GTX 1660 Ti GPU and 16 GB of memory.

After constructing the new model, we set the learning rate to zero in the initial layers,
specifically until the third convolutional layer. This process is called weight freezing. As
a result, the training time was reduced as the gradients for the frozen layers were not
computed, allowing the features obtained from ImageNet to be transferred to our model.
The head and mouth datasets were trained separately using the Adam optimizer (adaptive
moment estimation), which is one of the most powerful and widely used optimization
algorithms in deep learning, as it combines the advantages of RMSProp and momentum
optimizers. It reserves the exponentially weighted average of the preceding derivatives,
such as momentum, and the preceding squared derivatives, such as RMSProp [56]. Since
we applied transfer learning, we did not need a large number of epochs. Therefore, we set
the maximum epochs to three. The training dataset was split into mini-batches of 45 and
the initial learning rate was set to 0.0003 during training. The hyperparameter of the model
is presented in Table 5. Moreover, the model validated the network every 100 iterations.
To balance the count of images, training was carried out on the head and mouth datasets,
containing nearly 57 thousand and 69 thousand images in each class, respectively, as shown
in Table 6.

Table 5. Hyperparameter configuration for the transfer learning models.

Configuration Value

Optimizer Adam optimizer

Mini-batches 45

Initial learning rate 0.0003

Maximum epochs 3

Validation frequency Every 100 iterations

L2 regularization 0.1

Squared gradient decay factor 0.8

Execution environment multi-GPU

Table 6. Image count for the transfer learning model.

Head Position Dataset Mouth Movement Dataset

Training 45,600 images 55,200 images

Evaluation 5700 images 6900 images

Testing 5700 images 6900 images

Image Size 640 × 480 640 × 480

Total 57,000 images 69,000 images

5.3.2. Experimental Results

This section presents the accuracy and performance of the transfer learning model.
As illustrated in Figures 7 and 8, the model that classified head positions attained a test
accuracy of 95.9% and the model that classified mouth movements achieved a test accuracy
of 95.5%.
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5.3.3. Performance Metrics

Based on the confusion matrix shown in Figure 9, few performance metrics were
derived, namely, (1) PPV (positive predictive value), also called precision, which displays
the number of relevant selected cases (2); (2) recall, which indicates how many relevant
cases the model properly detected (3); (3) specificity, which shows how many of the model’s
actual negative cases were correctly identified (4); (4) FDR (false discovery rate), which
is the complement of PPV and shows how many false positive cases were identified (5);
(5) the F1-score, which is the mean PPV and recall (6). Moreover, the average results are
shown in Table 7.

Recall =
True Positive

True Positive + False Negative
(2)

Recall =
True Positive

True Positive + False Negative
(3)

Specificity =
True Negative

True Negative + False Psitive
(4)

FDR =
False Positive

False Positive + True Positive
(5)

F1 Score = 2 × Precision × Recall
Precision + Recall

(6)

Figure 7. Training progress of head position dataset.
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Figure 8. Training progress of mouth movement dataset.

Figure 9. Confusion matrix of the transfer learning model for (A) head position dataset and (B)
mouth movement dataset.

Table 7. Performance metrics of the transfer learning model.

Transfer Learning
Model

PPV Recall Specificity FDR F1-Score Accuracy

Transfer learning model PPV Recall Specificity FDR F1-score Accuracy

Head dataset 0.959 0.959 0.97 0.04 0.959 95.9%

Mouth dataset 0.955 0.958 0.977 0.04 0.957 95.5%

Combined model 0.957 0.958 0.97 0.04 0.958 95.7%
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5.4. AlexNet as a Feature Extractor with SVM Classifier Model

In this model, the AlexNet pre-trained CNN is used as an image feature extractor.
These features are then used as an input to train a machine learning classifier, such as SVM.
An illustration of the model representation is shown in Figure 10. This approach is one of
the easiest and most efficient methods of employing CNNs, as it saves a lot of the training
time since the model goes through the data only once. In this model, the pre-trained CNN
was fed a sample of the images from each class, approximately 3000 images for both the
head position and the mouth movement datasets, as presented in Table 8. The learned
features were extracted from the deeper layers, specifically, the second fully connected
layer, which is referred to as fc7 in Figure 10. We chose to extract the features from this
layer since it had high-level features learned from earlier layers. The output feature map
has a dimension of n × 4096, where n is the number of elements and 4096 represents the
number of extracted features. At this stage, we required a dimension reduction technique.
Therefore, the NMF function was used.

Figure 10. AlexNet as a feature extractor combined with SVM classifier.

Table 8. Image count for the feature extraction model.

Head Position Dataset Mouth Movement Dataset

3000 looking aside images 3000 yawning images

3425 nodding images 3000 talking and laughing images

2854 stillness images 3000 stillness images

9279 images 9000 images

5.4.1. Non-Negative Matrix Factorization

The non-negative matrix factorization is a well-known tool created by Lee and Se-
ung [57]. NMF aims to analyze high-dimensional data and extract distinctive features from
a set of non-negative vectors. Basically, NMF factorizes a matrix X with dimensions i × j
into two non-negative matrices, matrix W of size i × k and matrix H of size k × j, as shown
in Equation (7).

X(i, j) ≈ W(i, k)H(k, j) (7)

where non-negative matrix X represents the extracted features from all the pixels of the
input image; furthermore, the positive integer k has a value of k < min(i, j), where k values
represent the resulting columns and rows of W and H, respectively, as shown in Figure 11.
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Figure 11. Non-negative matrix factorization.

NMF has the ability to minimize the cost function, which is the square of the Euclidean
distance between X and WH. To this end, NMF applies a multiplicative update algorithm,
which is based on the gradient descent optimization algorithm with different multiplica-
tive update rules. Lee and Seung proved that the gradient descent could converge the
minimization problem in a limited number of iterations [58].

The previous section highlights that NMF is used for dimension reduction. However,
to obtain the optimal feature value (k) that optimized our model performance, we experi-
mented with our model using a different combination of k values (from 20 to 60). Moreover,
we compared the performance against different classifiers, optimizable SVM, optimizable
tree and optimizable KNN. The training was carried out for 100 iterations using Bayesian
optimization. Regarding the validation, we applied a five-fold cross-validation technique.
The configurations are presented in Table 9.

Table 9. Hyperparameter configuration for the feature extraction models.

Configuration Value

Classifier Optimizable SVM, optimizable tree and optimizable KNN

Kernel function Gaussian

Optimizer Bayesian optimization

K rank 20–60

Validation Five-fold cross-validation technique

5.4.2. Experimental Results

This section presents the training results of the feature extraction and reduction model.
Different reduced feature values for NMF were selected, ranging from 20 to 60, in combina-
tion with one of the classifiers. As shown in Figure 12, the SVM and the KNN classifiers
had a higher classification accuracy than the tree classifier. However, we chose to work
with SVM as it was slightly better and converged faster. Based on all the experiments, we
conclude that the best number of selected features is between 40 and 50. Therefore, the
performance metrics for the two best models that achieved the highest results are presented
below in Table 10. In addition, the corresponding confusion matrix for each of the head
position and mouth movement datasets are shown in Figure 13.
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Figure 12. Training results of the feature extraction model for classifying (A) head position dataset
and (B) mouth movement dataset.

Table 10. Performance metrics of the SVM-based feature extraction model.

Transfer Learning
Model

K Rank PPV Recall Specificity FDR F1-Score Accuracy

Head dataset 40 0.997 0.997 0.998 0.02 0.997 99.7%

Mouth dataset 50 0.996 0.996 0.998 0.003 0.996 99.6%

Combined model - 0.9965 0.9965 0.998 0.01 0.9965 99.65%

Figure 13. Confusion matrices of the feature extraction model for (A) the head position dataset and
(B) mouth movement dataset.

6. Discussion

Although the choice of the dataset depended mainly on public availability, we found
that the NTHU dataset is diverse in terms of ethnicity. It was found to simulate day and
night conditions with and without glasses. This allowed our experiments to be applicable to
real-life conditions. However, it is yet to be tested on a real-life driving dataset. Moreover,
the purpose of the technique of detecting the mouth movements from the entire face
was to learn the facial features, such as the eyes, while the driver is yawning, or talking
and laughing, making our model less dependent on a single feature. From the analysis
of different transfer learning approaches, we found that, by using AlexNet as a feature
extractor in combination with NMF dimension reduction and the SVM classifier, we were
able to improve driver fatigue detection performance, producing an average accuracy of
99.65%. In other words, we can say that our proposed model based on AlextNet feature
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extraction outperformed the AlexNet transfer learning approach in contrast to other works,
such as [39], where a comparison was made between transfer learning and the feature
extraction approach and the authors found that the feature extraction method did not
perform as well as the transfer learning methods in identifying the driver’s behaviors.
Moreover, we compared our proposed model with other research studies that used the
NTHU dataset, as shown in Table 11.

Table 11. Comparing our model with other works.

Citation Used Measures Method Dataset Performance

[31] Facial features Feature extraction through
multiple face descriptors
followed by PCA and SVM

NTHU Drowsy Driver
Detection dataset

Accuracy: 79.84%

[32] Eye state Improved HOG features and
NB classifier

NTHU Drowsy Driver
Detection dataset

Accuracy: 85.62%

[34] Facial features Multi-layer perceptron NTHU Drowsy Driver
Detection dataset

Accuracy: 81%

[20] PERCLOS, yawning CNN NTHU Drowsy Driver
Detection dataset

Accuracy: 98.89%

Our model Head position,
mouth movements

AlexNet feature extraction
based on NMF and SVM

NTHU Drowsy Driver
Detection dataset

Accuracy: 99.65%

7. Conclusions

Among the existing work for driver fatigue detection, we introduce a non-invasive
approach based on the fusion of features from the driver’s head position and mouth
movements. Our work utilized pre-trained neural networks, specifically, the AlexNet
CNN. Based on the conducted experiments on the NTHU dataset, we found that, by using
AlexNet as a feature extractor and NMF for dimension reduction followed by an SVM
classifier, we were able to achieve a high detection accuracy of up to 99.65%. Our approach
was compared with transfer learning with fine-tuning of AlexNet. However, it did not
yield a higher accuracy than our proposed model. In future work, we suggest testing the
model on a real driving conditions’ dataset.
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